Maximizing Forage Yield with Soil Testing and Fertilization

Brian Arnall
Nutrient Management Extension
After the 2011 Drought

• What do we do now.
Topics

• Comanche and Stephens Co Soil Test Results
• Fertilizing on a Budget
• Reference Strips
• Fertilizer Sources
Soil Test Results

• All samples from 2010 to current
• CAUTION: Includes lawn and garden
• What do you expect to see
 – pH
 – N
 – P
 – K
Soil pH

Comanche

Stephens

<5.5 5.5-6.5 6.6-7.5 >7.5
Nitrate

![Nitrate Graph]

- Comanche
- Stephens
Phosphorus

The graph on the left shows the distribution of phosphorus levels in two different regions, Comanche and Stephens, categorized into four brackets: <65, 65-120, 120-300, and >300. The graph on the right illustrates the percentage distribution of these levels in different ranges: 0-10, 10-20, 20-40, and 40-65.
Potassium

- Comanche
- Stephens
Fertilizing on a Budget

• Multiple approaches / scenarios
• First need some info
 – Yield history or potential
 – Soil Test: P, K, and pH
• Each scenario may have multiple options
• The correct option will be producer and environment dependent
Fertilizer on a Budget

• Scenario 1: Soil test show P and K adequate in all fields

• Option 1: Maximize yield and quality on limited acres
 – Choose field(s) with highest yield potential and only fertilize them to maximize yield.

• Option 2: Maximize return on each lb of N.
 – Or apply 50 lbs N ac per field over all fields.
Fertilizer on a Budget

- Scenario 2: Soil test show P is low in some/all fields while K is adequate.
 - Look at the sufficiency level of P on each field.
 - How much are you losing and how much to apply

<table>
<thead>
<tr>
<th>STP</th>
<th>% Suf</th>
<th>P_2O_5</th>
<th>STK</th>
<th>% Suf</th>
<th>K_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>75</td>
<td>0</td>
<td>50</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>60</td>
<td>75</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>40</td>
<td>125</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>95</td>
<td>20</td>
<td>200</td>
<td>95</td>
<td>30</td>
</tr>
<tr>
<td>>65</td>
<td>100</td>
<td>0</td>
<td>>250</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Fertilizer on a Budget

• Option 1: Max yield and quality with Nitrogen
 – Only apply N to the fields that have the highest P level.

• Option 2: Correct P deficiency
 – Apply P to the lowest values only and some N to select fields.
 – Apply litter to low P fields and commercial N to rest
Fertilizer on a Budget

• Scenario 2: Soil test show both P and K are low.
 – Look at the sufficiency level of P on each field.
 – How much are you losing and how much to apply
 – Keep in mind Total loss is P * K
 – P @ 60% and K @ 70% = 42% of Max yield
 – @ <50% max yield recovery of N investment will be low
Fertilizer on a Budget

• Option 1: Fertilize the worst field
 – Fertilize the field with the worst % Max yield

• Option 2: Fertilize the lowest Sufficiency
 – Fertilize with only P or K, which ever is impacting yield the most.

• Option 3: Focus on N
 – Fertilize the field(s) with the highest potential yield.
N-Rich Strip
N and P
Nitrogen Source and Time

- N Source can be very important just as important as the timing.
- Urea
- UAN
- Specialty
- Ammonium Nitrate
Experimental Details

- All N applied as a single, annual application.
- Results are yields averaged over two to three (Ardmore, August treatments) years.
 - Three to five harvests per year, depending on growth.
- Both sites were non-irrigated, acidic soils.
 - Ardmore pH = 5.2
 - Burneyville pH = 5.6
Bermudagrass Response to Ammonium Nitrate and Urea Applied in August or March at Ardmore, OK 1993-96.
Bermudagrass Response to Ammonium Nitrate and Urea Applied in August or March at Burneyville, OK 1994-96.
Summary

• 10 to 30% loss of N may occur from urea applied in mid summer to bermudagrass.
 – Loss is minimal if there is little surface residue and it rains within a day of application (Burneyville).

• Early spring applied urea is as effective as ammonium nitrate.
Thank you!!!

Brian Arnall 405-744-1722 b.arnall@okstate.edu
Presentation available @ www.npk.okstate.edu
Twitter: @OSU_NPK You Tube Channel OSU_NPK