NITROGEN USE EFFICIENCY: AGRONOMIC PERSPECTIVE

Brian Arnall
Oklahoma State University
Precision Nutrient Management Specialist
Improving NUE

- What are we improving?
- Two types of NUE
 - The Scavenger
 - The Converter
- What is the goal?
An Understanding of Soil N

- The importance of understanding N in the soil helps us understand why NUE is such a loftily goal that has to include both
- Genetics
- Agronomics
N-Cycle

- OM
- 2 OM Processes
- 2 N Processes
- 3 Sinks
- 4 losses
- 5 additions
Organic Matter

- Central point of the Nitrogen Cycle
- In an acre furrow slice 1000 lbs N per 1% OM
- A continuous flow of N into and out of OM.
Organic Matter Processes

- Immobilization
 - NO_3 and NH_4 tied up into OM

- Mineralization
 - OM decomposed into NO_3 and NH_4

- High Carbon (straw) = Immobilization
- Low Nitrogen (alfalfa) = Mineralization
Nitrogen Processes

- **Amminization and Ammonification**
 - OM converted to NH_4
- **Nitrification**
 - NH_4 converter to NO_3
- **Ammonium + charge and Immobile**
- **Nitrate – charge and mobile**
Nitrogen Sinks

- Large Amounts of Nitrogen located in these pools.
 - Atmosphere: 78% N in the form of the diatomic gas N_2
 - Nitrate Pool
 - Microbial Sink
15.40 kg/ha
\[\text{N}_2 \text{O}, \text{NO}, \text{N}_2 \]

10.80 kg/ha
\[\text{PLANT AMINO ACIDS LOSS} \]

0.50 kg/ha
\[\text{AMMONIA VOLATILIZATION} \]

0-40 kg/ha
\[\text{LEACHING} \]

15.40 kg/ha
\[\text{INDUSTRIAL FIXATION} \]

HABER BOSCH (1200°C, 500 atm)
\[3\text{H}_2 + \text{N}_2 \rightarrow 2\text{NH}_3 \]

10.80 kg/ha
\[\text{PLANT AND ANIMAL RESIDUES} \]

MATERIALS WITH N CONTENT > 1.5% (COW MANURE)
MATERIALS WITH N CONTENT < 1.5% (OW/HEAT STRAW)

0-50 kg/ha
\[\text{AMMONIFICATION} \]

\[\text{R-OH} + \text{ENERGY} + 2\text{NH}_3 \]

\[\text{Heterotrophic Bacteria} (pH 6.0) \]
\[\text{Fungi} (pH 8.0) \]

\[\text{IMMOBILIZATION} \]

\[\text{AMINIZATION} \]

\[\text{ORGANIC MATTER} \]

\[\text{NH}_3 \rightarrow \text{NH}_2\text{OH} \rightarrow \text{NH}_2\text{O} \rightarrow \text{NH}_3 \]

\[\text{MICROBIAL PLANT SINK} \]

\[\text{MINERALIZATION + NITRIFICATION} \]

\[\text{NITRIFICATION} \]

\[2\text{NO}_3^- + \text{H}_2\text{O} + 4\text{H}^+ \]

\[\text{NITRIFIER} + \text{O}_2 \]

\[2\text{NO}_2^- + \text{H}_2\text{O} + 4\text{H}^+ \]

Oxidation States:
\[\text{NH}_2\text{NH}_2 \text{AMMONIA} -3 \]
\[\text{NH}_3\text{+ AMMONIUM} -3 \]
\[\text{N}_2 \text{DIATOMIC N} 0 \]
\[\text{NO NITRIC OXIDE} 2 \]
\[\text{NO}_2 \text{NITRITE} 3 \]
\[\text{NO}_3 \text{NITRATE} 5 \]

\[\text{DENITRIFICATION} \]

\[\text{LEACHING VOLATILIZATION NITRIFICATION} \]

\[\text{TEMP 50°} \]

\[0.40 \text{kg/ha} \]

ADDITIONS

\[\text{OXIDATION REACTIONS} \]

LOSES

\[\text{REDUCTION REACTIONS} \]

Joanne LaRuffa
Wade Thomason
Shannon Taylor
Heather Lees

Department of Plant and Soil Sciences
Oklahoma State University
4 Losses

- Leaching
 - NO_3 – follows water flow.

- Ammonia Volatilization
 - NH_4 at a pH >7 H is stripped off and NH_3 (gas) formed.

- Denitrification
 - NO_3 in waterlogged soil. Microbes strip O off

- Plant Loss
 - NO_3 and NH_4 converted to NH_3 in plant, in stress NH_3 gassed off.
pH and Temp are Drivers
Additions

- Lightning and Rainfall
- Biological N Fixation
- Decomposition
- Industrial Fixation
- Fertilization
Remember Organic Matter

- Organic Matter is the Driver
- Annual N need is determined by Mineralization and Immobilization
- Environment, temp and rainfall, drives Mineralization and Immobilization
Nitrogen Tradition?

We Solve your problems with a **Big Stick!!**
N Rate

- Stanford Eq.
 - JEQ Vol 2 No 2 1973 pgs 159-166
- \[Nrate = \frac{(\text{Nupt} - \text{Nsoil})}{\text{Efficiency}} \]
- N rate from Three Simple numbers
- Nitrogen Uptake by plant
- Nitrogen Supplied by Soil
- Efficiency of Fertilizer
From the viewpoint of an Agronomist.

We have the data.

We have LOTS of data.

Are we using it effectively?

Or just looking the highest yields and N conc.
NUE plants –

- The Scavengers
 - Landraces
 - Poor yielders with good environment
 - Best yielders in limited environment
 - Rooting system…..

- Converters
 - Efficient internal use
 - Best quality in limited environment
NUE wheat, My Ideal

- For the Southern Great Plains
- A plant that can scavenge and converts N to grain well of course.
- Those alone miss the boat.
- N Responder
How to find a Responder

- The identification of a NUE can not be made without multiple N rates.
- Low rate, Mid Rate, Opt
- The least important rate is the optimum N rate.
Factors

- Isolate the highest yielding cultivars within the zero N and mod N.
- Isolate the greatest responders
 - Relative to Check. Mod/check.
- Incorporating Response will likely negate some of the Scavengers.